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1. Phys. A Math. Gen. 26 (1993) 5523-5540. Printed in lhe UK 

Relativistic dynamics of wave packets for spin-; particles in 
an electromagnetic field 

S Dank0 Bosanac 
R BoSkovie Instihlle, Zagreb. Croatia 

Received 27 November 1992 

Abstract Classical and quanlum dynamics of wave packets for spin-4 panicles are analysed 
in the presence of an elecmmagnetic field. An a h "  exact agreement is found between these 
MI0 approaches. both in lhe strong and the weak coupling limits. The question of negative 
energy states is discussed, and it is shown hat lhey are not produced in such an interaction. The 
divergence problem of the perhubation expansion of Ihe particles wavefunction is discussed, lhe 
source of which is explained. 

1. Introduction 

Recent study of the relativistic wave packets for a scalar particle [ 11 showed that under 
many circumstances classical theory gives an almost exact description of its dynamics in the 
electromagnetic field. This finding has an important value because it shows that classical 
theory can be used as an alternative to solving the problems of the particle's dynamics. 
Classical theory has certain advantages over quantum theory, such as it allows the use of 
classical concepts in modelling the particle's dynamics. Furthermore, classical theory is 
an initial value problem in contrast to quantum theory, which is both the initial and the 
boundary value problem. Very often the former is easier to solve and, therefore, can be 
used as an alternative to solving difficult sdattering problems. However, in all these one 
should have a clear idea of what the limitations of classical theory are. and the study of this 
is the prime objective of this work. 

In this work we analyse the classical and quantum dynamics of a wave packet for a 
spin-; particle, which is interacting with the electromagnetic (EM) field. The basic idea in 
the classical study is to assume that the wavefunction represents the probability amplitude, 
i.e. its square modulus (for the spin-; particles the square modulus must be taken in a 
broader sense) represents the probability density of finding a particle at a certain position. 
Likewise, the wavefunction in the momentum space represents the probability amplitude of 
a particle having certain momentum. Both these probability distributions can be used to 
determine the initial conditions for the classical trajectories, by generating random numbers 
which follow these distributions. After generating large numbers of classical trajectories, 
the classical probability distribution aftex time f is obtained by a suitable sampling [2]. The 
details of the procedure are explained in [2]. Based on this idea it will be shown that 
the scattering problem of a particle in the EM field is basically a classical process. The 
deviations which are noted are not significant and have simple explanations. The classical 
dynamics does not include the motion of the spin in the field, but despite this there is almost 
perfect agreement with the quantum results. 

0305-4470/93ROS5WC18$07.50 @ 1993 IOP Publishing Ltd 5.523 
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Various aspects of dynamics of a particle in the EM field are discussed, and nearly 
exact agreement between the classical and the quantum analysis helps us in reaching 
certain conclusions. In particular this concerns the problem of the negative energy states, 
the problem of spin and the source of divergences in the perturbation expansion of the 
wavefunction. 

2. Quantum theory 

2.1. Solution of quantum equation 
The basic relativistic quantum equations which describe interaction of a spin-; particle with 
the EM field are? 

where U = (ux,uy,ur} are the spin-; matrices (the fourth component is uo = I, where 
I is the unit matrix), and A’ = (Ao, A1 are components of the four-potential. The four- 
momentum operator has the explicit form 6’ = [$oq @) = i((i3/df), -V). For the rest of 
this paper we shall use the standard, shorthand, notation. The contravariant vector x p  has 
components 2’‘ = (xo,  r ) ,  while the covariant has x” = ( X O ,  -rt. The invariant product 
of two vectors a’( and b’ is designated shortly (ab) = a’b’, so for example, the Lorentz 
condition for the four-potential, which we employ here, is 

( ; A )  = fi’A’ = 0. (2) 

In this work it is assumed that the four-potential is a function of ( x k ) ,  where 
k = (ko = W O / C ,  k) is constant and represents the four-wave vector of the EM field. This 
assumption is not very restrictive since it coven wide ranging EM fields which are often used 
in the analysis of the interaction of radiation with matter. It covers a particularly interesting 
case of the plane wave EM fields which will be studied here. The number of parameters in 
( I )  is unnecessarily large and can be reduced by a convenient scaling. The four-position 
vector x = (cf, r }  is scaled by the Compton wavenumber of the particle K = mc/h, and 
in order to simplify the notation we use {I, r )  to designate the four-vector [Kef,  K r ) .  The 
four-potential is written as A = (E/ko){ao. a). where E is a constant which measures the 
amplitude of the vector potential. In the simplest case of the plane wave, where the vector 
potential A has a constant amplitude Ao, it is defined by E = kolAol and plays the role of 
the maximal strength of the electric field in the interaction. Using these definitions the set 
( I )  is now 

(bo - Qao)@b + - Q W b  = @a 

(3) 
(bo - Qa0)ll.O - u(li - Q a)@o = @b 

t This is the symmelrized form of the standard u(uations for the spin.; particles. It is more convenient for 
practical analysis. 
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where Q = eE/(mcwo). and plays the role of the coupling parameter. In the last equation 
the fcui-momentum operator is also scaled with respect to Compton’s wavenumber. The 
four potential a is now a function of the variable ( k x ) ,  where k = [q. k / ~ )  = [q, q]  and 
q = hwo/(mc2). 

The set of equations ( I )  has an analytic solution, which is briefly re-derived [31. The 
two functions & and @b are not independent of each other, and if $o is given then 

‘h = o ” ( F p  - Qap)’!’~. (4) 

The function satisfies the second-order equation 

(FbW + Q 2 ( a a ) h  - Q E ‘ h  - 2 Q ( a b ) b  = 11-. (5 )  

where 

‘c’ = io”o”k”a: (6) 

with the property E’C’ = 0. In the derivation of (5) we used the Lorentz condition (Z), 
which in this case is (ka’) = 0, where the prime designates the derivative with respect to 
the argument U = ( k x ) .  The set ( 5 )  is solved by replacing with 

q - - e  - - i l X P J w ( u )  (7) 

where W satisfies the equation 

in the derivation of which we used (pp )  = 1. The equation (8) has an analytic solution so 
that the most general +o is 

where 

and @b is now given by 

where [ok] = oJ’k’. and where the additional condition (ka) = 0 was used. The choice 
of ug and WO (which is a two-row matrix) depends on the initial conditions, which will be 
discussed later. 

The solutions (9) and (1 1) are satisfied for two signs of PO, i.e. for po = &-. 
The positive energy solutions $At) and @F) are defined for po z 0, and the negative energy 
solutions and for po < 0. 
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More convenient in further analysis is to use the linear combination 

@ = $ & + $ b  X = $ a - $ b  (12) 

and define the four-component wavefunction 

*=(;). 
Using this function, the most general solution which describes dynamics of a particle in the 
EM field is 

@ = /d3p [@'+'fW + @'-'g@)] (14) 

where f and g are scalar functions, which are determined from the initial conditions. At 
t = 0 it is assumed that there is no interaction between the field and the particle, i.e. the EM 
field is localized in the space region where the wavefunction of the particle is negligible. 
In other words, a = 0 at t = 0 in the region where @ is defined, hence the initial $ is 

The function WO is defined so that *:$o = 1 which gives 

where Iw1I2 + Iw2I2 = 1. From now on we use (16) in the analysis of (14). 

2.2. The choice of the initial conditions 

There are three parameters which specify (14) uniquely. These parameters are f ,  6 and w1. 
defined in (14) and (l6), respectively. First, we note that in general the state @ contains 
both positive and negative energy components. There has been much discussion about the 
role of the negative energy states in the relativistic dynamics of particles, but despite the 
controversies which were brought about by these discussions, we will make the assumption 
that in the initial state @O there are no negative energy states. This choice implies g(p) = 0, 
which puts a constraint on the initial components of @o. Setting 1 = 0 in (14) we find 

where 
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The set of equations (17) determines f and g, and if g = 0 then the components CJt' and 
CJp are inter-related through the integral equation 

and 

If W I  and w2 are independent of p then CJt' is parametrized as 

where F is a scalar function. Therefore, by specifying wl and by selecting only the positive 
energy states in the initial conditions, the function F determines uniquely the time evolution 
of the state CJ. The function F is determined by putting forward another proposition. It is 
known that 

d r )  = a+(?) (22) 

is conserved and positive, and despite controversies associated with this function we assume 
that it represents the probability density. This assumption is not necessary but it will be 
crucial when making comparison with the classical dynamics of the same process. 

Therefore, if p ( r )  is assumed to be known then obtaining F ( r )  is not a trivial task (for 
simplicity we assume that F is real, otherwise a much more elaborate discussion is needed 
if the phase of this function is to be recovered, which involves knowing the probability 
current). The reason is that CJt' is related to CJt) through an integral transform and it is 
not clear how the equation 

can be solved for F. In our study we will assume that F ( r )  = pl/z(r), which gives for the 
amplitude f@) in (20) 

Of course f ( p )  will not reproduce p ( r )  but will give its overall shape. 

3. Classical theory 

The classical equations of motion for a particle interacting with the EM field are 
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where the dot designates the derivative with respect to the proper time s and U, = i,. If 
the scaling of the previous section is used then the equations take the following form 

where Q was defined in (3). It is assumed that a, is a function of ( x k ) ,  in which case 
the set of equations (26) can be solved by putting ( x k )  =as, where LY is a constant which 
needs to be determined 141. Using this replacement we find that 

ad, k , .  
axp LY 

0” _ = _  

and the set of equations (26) becomes 

and when integrated gives 

where c, is a constant which is determined from the initial conditions. X.at t = 0 there is 
no interaction between the particle and the field then U = 0. hence c, = = the initial 
proper velocity of the particle. The set can be solved for the unknown U, giving 

from which one obtains LY = (uok). When the set is integrated again the coordinates x, are 

where x: are the initial coordinates. 
It is of particular impoltance to relate the proper time s to the real time f, since all the 

dynamics i s  analysed in the latter. This relationship is obtained by specifying /L = 0 in 
(31), hence 

where uo is the initial velocity of the particle. It is assumed that at s = 0 the real time is 
f =o. 

A particularly interesting case is when a is an oscillatory function with the property 
a,(as f k )  = a,(cus). The period of oscillations of the trajectory in real time is obtained 
from (32) 
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where As = 2a fa. If the average of (aa) over one period is (aa) then 

During the same time the particle moves to a new position, which is calculated from (31). 
thus giving the average translation velocity 

This result will be useful in the analysis of the dynamics of the particle in the oscillating 
EM field. 

We will now describe the classical theory for the time evolution of the probability 
distributions [2]. The question which needs to be answered is the following: given the initial 
probability distributions of the particle's position and momentum, how do these distributions 
develop in time? It is exactly this question which is tackled in quantum theory, and one 
should try to answer it in classical theory. 

Within the statistical interpretation of the wavefunction I f  @)Iz, where f@) was defined 
in (17). is interpreted as the probability density that a positive energy particle has momentum 
p. Likewise (22) is interpreted as the probability density of a particle being at the position 
P. By generating two sets of random numbers. one for the momentum and the other for 
the coordinates, which follow the distributions If @ ) I z  and p(r), respectively, we choose 
random initial conditions for the classical dynamics problem. For each set of conditions 
the trajectory is calculated from the equations (31). If N pairs of random initial conditions 
are chosen, then the final positions of these trajectories, after time t ,  will be spread over 
the space, which is assumed to be partitioned into the small volume elements SV. If R 
trajectories end in a volume element which encloses the coordinate r ,  then the classical 
probability distribution p ( r ,  t )  is approximately given by 

It should be noted that the quantum probability distribution is given by (22). where the 
wavefunction is given by (14). 

Throughout this paper it is assumed that f (p) parametrizes as 6(p,)S(p,)f(p,) which 
greatly simplifies the theory, but at the same time does not reduce the generality of the 
problem. Calculations with two typical probability distributions will be reported. One with 

and produces the Gaussian-like shape of the probability distribution in the coordinate space. 
The other is 

112 1 eud - I 
f (PI = (a[Z(l -eud) t a d ( l  +eud)]) 2sh(pn/u) 

which approximately produces the probability distribution 
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This shape has a nice feature that it is localized in the space d z z =- 0, and in between it is 
nearly constant, which makes it particularly suitable for the study of the plane wave limit. 
Using the Gaussian-like shapes this is not easily achieved since that would mean pushing 
the EM field to z -+ 03 (it is assumed that at t = 0 there is no interaction between the EM 
field and the wave packet). In the case of (39) the EM field can be localized in the space 
z -= - (zo(  = zo for I < 0, and by letting d -+ 00 the plane wave limit is achieved in the 
space z >> l h .  
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Figure 1. Classical (circles) and quantum (full curve) free probability distributions for the 
Gaussian-like. ( U )  and (b). and the rectangular-like shapes (c)  and (d) .  The elapsed lime for 
each of them is differen1 and given in the text (a) and ( E )  correspond 10 initially wide, and ( b )  
and ( d )  to initially narrow. probability distributions. 

As the preliminary test of how well classical theory reproduces the quantum dynamics, 
we have made several studies of the time evolution of free wave packets. Almost exact 
agreement between quantum and classical theory was found for the Gaussian-like shapes, 
independent of the initial conditions. Two typical cases are shown in figure I. In the first 
(figure I(a)) the initial wave packet is relatively broad (d = 1) compared to the Compton’s 
wavelength, and in the second (figure I@))  it is narrow (d = 0.1). For the broad wave 
packet the time after which the comparison is made is t = 20 (time is measured in the 
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dimensionless units ct/K, and in the real units that would be E = 2 0 ~ / c  s). The narrow 
wave packet is shown after E = 1. The classical results (circles) were obtained with 1OOooO 
pairs of initial conditions. The agreement with the quantum results (full curve) is nearly 
exact (fluctuations of the classical results are due to the statistical spread of the random 
initial conditions), the agreement which was found in all the other circumstances. 

The results for the rectangular-like shape (39) are shown in figure l(c) and (d ) .  Again, 
the same agreement was found as in the examples with the Gaussian-like shapes, except 
for very narrow wave packets. In fact, the most critical parameter is a, which measures 
the slope of the wave packet at the two ends. For a wide wave packet (figure I(c)), 
with OL = 0.01 and d = 5000, after f = IOOOO units of time. the agreement between the 
classical (circles) and the quantum (full curve) results is nearly exact. Figure I (d)  shows 
one example where the agreement is not so perfect, which is the result of the effect arising 
from the narrow edge of the wave packet (a = IO, d = 5 and t = 30). However, these 
cases are rather isolated and should be avoided. 

4. The limiting cases 

Various examples of dynamics of the wave packets in the EM fieId were investigated. The 
EM field was assumed to be linearly polarized along the x axis, and it is described by the 
four-potential 

U’’ = (0, sin[q(z - t - ZO)]. O,O]O(zo + E - z) (40) 
where O(q) is the step function meaning that the field at I = 0 is localized in the region 
z < 20. The phase of the field (40) is chosen so that the requirement imposed in the classical 
equations of motion (at t = 0 the EM field is zero at the wave front) is fulfilled. 

In all the cases investigated the agreement between classical and quantum results is 
almost exact. A few typical examples are reported, and in the first a Gaussian-like shape 
of the width d = 1 is investigated. The initial position of the EM wave front was taken at 
zo = -10, and the wavenumber of the field is q = 1, while the coupling parameter had the 
value Q = 1, which describes a moderately strong interaction. After t = 100 units of time 
the probability distribution is shown in figure 2(u). The classical results (circles) match 
almost exactly the quantum results (full curve). Another example is shown in figure 2(b) 
where the relevant parameters are: zo = -10, q = 1, d = 0.1, Q = 5 (strong coupling) and 
t = IO. In this example the EM wave front reached the point L = 0, so that the probability 
distribution for z > 0 is unaffected by the field. Such a good agreement between classical 
and quantum theory is not always found. Figure 2(c) shows an example for the rectangular- 
like probability distribution. with the following parameters: zo = -100, d = 200, a = 0.1, 
q = 0.1, Q = 1 and I = 500. In figure 2(d)  the parameters are the same except that Q = 5 
(stronger interaction). It is interesting to note that in all the investigations the results are 
independent of the initial value for WO, i.e. whatever the choice of W I  the quantum and the 
classical p do not change. 

Two extremes will be discussed in more detail: the weak and the strong interaction, 
because they give an interesting insight into the nature of the particle-EM field interaction. 

4.1. The weuk coupling limit 
The weak coupling limit is defined for Q << 1, in which case the powers of Q higher than 
the first can be neglected. The wavefunction (13) is then approximately 
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0'000-100 -60 -20 20 60 100 
z 

L 

Figure 2. Classical (circles and crosses) and quanwm (full curve) dynamics of the probability 
disuibutions under various ciTcumsIances. Gaussian-like shapes: ( a )  Mcderately strong coupling 
and high-frequency field. (b)  Strong coupling and initially nmow probability distribution. 
Rectangular-like probability distributions: (c) Moderately smng and (d )  smng coupling limits. 

where A, B, and C, are the fourcolumn matrices, and are functions of p .  The time 
evolution of the wave packet is now given by 

which has two components: one representing the time evolution of the free wave packet 
(the term with A )  and the other representing the 'scattered' wave packet (the term with B ) .  
However, the latter has exactly the same form as the one for a free wave packet, except 
the 'modulation' term a is present. The functional dependence of B on p is of a similar 
form to A meaning that the second term in (42) represents the free-like movement of the 
wave packet Therefore, in the weak coupling limit the motion of the free wave packet is 
not affected by the field except that its shape is modulated, which arises from a. These 
'ripples' are difficult to observe since the free wave packet dominates the dynamics of the 
probability distribution. However, by calculating the difference p - pme one eliminates 
the dominant term and only the contribution from the interaction is observed. In quantum 
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theory this difference is approximately 

p - pfme = *+e - 

= Qa’ //d3pd3p’ f * (p ) f (p ‘ ) [B ,+(p )A(p ’ )  + A + ( P ) B ~ ( P ’ ) ]  

(43) 

which consists of two parts, one of which involves integrals over the momentum space, 
and the other involves a’. The first pan represents interference between the scattered 
and the non-scattered wave pack-, and it is expected to be a quantum effect. Owing to 
the difference p‘ - p in the exponential function, this contribution is a slowly oscillatoly 
tem. The term a@ is the ‘modulation’ of the probability distribution and produces highly 
oscillatory ‘ripples’. 

eir(d-p)-it(pA-po) 

-0 003 
- 40 -20 0 20 40 

z 
Figure 3. The difference between the interacting and the free probability distributions, in the 
weak coupling limit. The full curve represent$ classical calculations, and the broken curve the 
quanlum ones. The inilial shape is Gaussian-like. 

Comparison with classical theory is difficult for practical reasons. In classical theory 
the probability distribution is obtained by generating random numbers, which have certain 
statistical fluctuations, and they should be smaller than the difference p - pfm. This is 
hard to achieve for a very small Q, so the comparison was made for Q = 0.3. The other 
parameters of the wave packet dynamics (for the Gaussian-like shape) were: q = I ,  d = 5, 
zo = -25 and f = 100. Classical calculations were done with four sets of IO6 pairs of 
random initial conditions, both for the free and the interacting probability distributions. 
Each set differed from the other by the initial seed. The results of subtracting the averages 
of the probability distributions are shown in figure 3 by the full curve. The broken curve 
shows the quantum results. The agreement between the two is nearly exact, within the 
statistical fluctuations. Therefore, even in this limit the dynamics of the particle in the EM 
field is basically classical, apart from the deviations associated with a particular choice of 
the initial wave packet. 
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It is interesting to investigate the limit which is often used in the quantum calculations: 
the plane wave limit of the particle's wavefunction. It is achieved by taking d --f 03 in the 
shape (39) (omitting the normalization factor because the norm of such a wave packet is 
infinite) and take that part of the perturbed wave packet which is behind the wave front of 
the EM field (for z < t + 20) and away from the origin (z >> l/a). The amplitude f(p) for 
such a wave packet is 

where P[] stands for the principle value. It should be noted that owing to the parametrization 
of the amplitude fm the average initial momentum of the particle is zero. If it is p o  then 
the 3D parametrization of f(p) should be S(p~)S(p~)f(p,  - p,"). 

A typical integral which needs to be solved in the wavefunction, for this amplitude, is 

I = dpz A(pdfm(pz)ei"p'' (45) / 
where A@,) is a smooth function of pz, and it has a square root branch point at p z  = rti, 
the same as in q(pz ) .  If fm is replaced by (4.4) then 

where for simplicity we have assumed that A(p,) is a symmetric function of pr .  In the 
weak coupling limit the integral becomes 

The integration path can be distorted into the upper half of the p .  plane, at most to the point 
p1 = i, where the integrand has the square rmt branch point. When z is sufficiently large, so 
that exp(-z) << 1, then along this path the integral containing exp(ip,z) is negligible. The 
integrand containing exp(-ip,z) is not negligible, but this integration path can be distorted 
into the lower half of the p z  plane, where it is negligible. However, in doing this we must 
add the contributions from the residues, arising from the poles of sh(z)-' .  The dominant 
pole is at p2  = 0, while the next one is at pr =a .  It can be shown that the integral is now 

(48) 

where the remainder comes from the contribution of the pole at pt = a. If az > 1 then 
the integral I is the plane wave limit. It should be noted that the initial momentum of the 
particle is pinit = 0, however, if it is p' then the limit (48) is proportional to exp(ip'r-ip$). 
Therefore, the choice of the initial wave packet of the type (39) leads naturally to the plane 
wave limit, in the weak coupling case. Based on this result, it can be shown that the most 
general particle's wavefunction, in the plane wave limit. is 

I = A(O)e-" + 0 (e-"') 

+ Q(as)eiv-ipa' (49) 0 = A eiPr-iml 

where the coefficients are obtained from (13) when the second and higher powers of 
Q are neglected. The first term represents the unperturbed particle's state, while the 
second is the perturbed one. In the language of quantum electrodynamics the second term 
represents contribution from a particle being scattered by the photon. In fact, based on this 
approximation the Klein-Nishina formula was derived [SI. 
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Figure 4. Very m n g  coupling dynamics of the reclangular.like initial shape Woken curve). 
After the wave front of the m field has passed the initial wave packet all Ihe probability is 
‘squeezed’ into a narrow interval (full curve). 

4.2. The strong coupling limit 

The strong interaction between the EM field and the particle is characterized by Q > 1. In 
this case the dynamics of the wave packet cannot be based on the approximation where 
the plane wavefunction is represented by the series of various orders of corrections to the 
unperturbed wave, as was done in the weak coupling limit. In order to see this we repeat 
the derivation of the plane wave limit, but now for the entire wavefunction (13). The typical 
integral which needs to be solved is (46), but the phase is now 

(50) 
where the t e n  of order Q is neglected. The integral along the path in the upper half of 
the p z  plane can be neglected provided the coefficient with p z  in (50) is positive, which is 
satisfied for 

~ ( p . )  = pi[z + $QZ(aa)(t  - 2  + z o ) ]  +PO[ - t + iQZ(na)(t  - Z + Z O ) ]  

1 2 -  

(51) 
-5 Q @a) ( t  + 20) 

1 -5Q (nu) 1 2 -  
Z >  

- and this gives the region where the plane wave approximation is valid. If we note that 
(uu) c 0 and that the wave packet is unperturbed by the EM field for z > f + 20, then the 
plane wave limit is valid in a small interval 

(52) (t + zo) - 6 < z c t +z0  

where 

Therefore, the perturbed part of the probability distribution, which is non-negligible, is 
confined to a namw region of width c, behind the front of the EM field. The rest of the 
affected probability distribution from z = 0 to (t  + 20) - E is ‘pushed’ into this narrow 
interval, and because of the conservation of probability the average value of p in E is 

(54) 
- p = l - ’  2- 

z Q  (4. 
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Figure 4 shows one example of this dynamics, for a finite rectangular-like probability 
distribution, with the following parameters: Q = IO, 4 = 0.01, d = IOOOO. a = 100 and 
zo = -1OOO. The initial probability distribution is shown by the broken curve, and after 
f = 12000 units of time it is shown by the full curve (it goes without saying that the classical 
theory reproduces the quantum results exactly). The unperturbed wave approximation, of 
the sort exp[-i(px)], i s  obviously not valid in the interval E. However, a more general 
approximation @ = -pi/’. Therefore, the 
modulus of 1G. is a purely classical effect arising from setting the probability distribution 
into motion at uniform speed. 

11. is valid, where 11. is given by (13) and 

Figure 5. Test of the lrmslation symmetry of lk probabiliy distribution in the strong coupling 
limiL When lhe probability distribution (full curve) is calculated at the time I + AI and vanslated 
back by A (circler) the two match each other exsctly. 

The affected probability distribution moves at the average speed (35) and oscillates with 
the period (34), therefore, it has the following translation symmetry 

’ ’ p ( r .  t )  = p ( r  - A, t + Ad (55) 

where A = vavAl. In our particular case, for the wave packet in figure 4, the period is 
A, = 16336 and A = 15708. Two probability distributions were calculated at this time 
interval, and translated by the shift A. Figure 5 shows the result, where the full curve 
represents the probability distribution at t = ZOO00 and the circles at t + AI, but translated 
back by A. The two distributions match each other exactly, except for slight deviations at 
their edges, which might be caused by their dissipation during the time interval. 

5. Discussion 

Nearly exact agreement between the quantum and classical results for the dynamics of a 
spin-f particle in the EM field raises several important questions. One, which comes first 
to our attention, is why classical theory, which does not take spin into account, reproduces 
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the quantum results for a spin-; particle? If the particle has spin it would manifest itself 
in the quantum solution and the results would not be equal to the classical. The answer to 
this question needs much more elaborate discussion and will be reported separately [7]. In 
short, however, one can say that it can be shown that the spin of the particle is a classical 
concept, unlike the magnetic moment, which should be included in the classical equations 
of motion IS]. In fact, it follows from that discussion that the particles do not have the 
‘intrinsic motion’ which gives rise to spin, instead one describes the manifestation of spin 
by the classical dynamics with point-like particles. 

The second question which also comes immediately to our attention is why there is 
such a perfect agreement between classical and quantum theories when it is known that, 
according to the relativistic quantum dynamics, the negative energy states (antimatter) are 
created? The arguments in favour of the latter conclusion can be found in any text book 
on relativistic quantum theory. For example, Heitler says: ‘An extemal field (if it varies 
sufficiently rapidly) can cause transitions from a state of positive energy to a state of 
negative energy’ 19, p 1 I I], or in Feynman’s lecture notes on QED one finds an example 
where the transition probability to the negative energy state is calculated, not from QED 
but from relativistic quantum theory (the field is treated classically) [IO, p 671. Yet in our 
results no inconsistency between the classical and the quantum results is found, even for 
very high-frequency fields. It should be recalled that in classical theory only the positive 
energy states are included, and for real times no transition into the negative energy states 
is possible. In fact, we now show that in quantum t h e w  such a transition is not possible, 
at least for the type of interaction which we discussed. 

The time evolution of the wave packet, in the presence of the EM field is (14) (where 
g = 0). and in order to avoid any controversies, we assume that the incident EM wave has 
finite length, and that the components of the wave packet are analysed when this wave has 
passed, and is far away from the wave packet. Therefore, for large enough t 

where & is given by (13) for po > 0, and the components are given by (9) and (11). In 
these components the only quantity which is ‘history dependent’ is the phase q ,  since the 
others depend on the actual value of the field, which is assumed to be zero in the region of 
the wave packet. Therefore 

where $0 is given by (15). The value of U ,  is determined by the length of the EM field. 
The wave packet is now 

Qm = / d3p +A+)(r, p)f(p)eiqo‘P’ (58) 

from which it is obtained that no negative energy states are present because 

/” d3r +A-’’ 4- = 0. (59) 

This result is in accordance with the classical study, where the agreement with the quantum 
results is achieved without including the negative energy states. 
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The conclusion is in direct disagreement with the aforementioned ObServatiOnS by Heitler 
and Feynman. We will not elaborate here the controversy since it involves a discussion 
which needs more space than is available. A separate report on the subject will be given 
[ I l l ,  but here we will only mention that the issue of the creation of antimatter goes back 
to the basic development of quantum theory. It can be shown that some basic errors were 
made in reaching the conclusion that Dirac's equation, coupled to the external field, predicts 
creation of antiparticles (the negative energy states). This paper, on the examples which 
were demonstrated, supports such a conclusion. 

There is another question which comes out from the analysis, but is not so self-evident. 
It concerns the exact solution (9) and (I 1) of the quantum equations of motion and its 
expansion into the perturbation series. The solution is one of the special cases among those 
possible from the basic quantum equations which describe interaction of the EM field with 
the spin-f particle. The most general set of these equations is [ 121 

where (I is the fine-structure constant and y are the Dirac matrices. The first equation is 
the well known Dirac equation, and the second one is the equation for the EM field (its 
four-potential) in the presence of the current. The set of equations have a formal solution 
in the form of the set of integral equations [ 12, p 761 

@ = $0 + Q 1 d4x'S(x - x')(ya(x')) $ ( x ' )  

(61) 

d4x' G(x - x ' )  @+y, $ 

where we used the expression for the cumnt j ,  = @+y,@. @o is the unperturbed 
wavefunction and a: is the unperturbed four-potential. The coupled set of equations is 
nonlinear and obviously not easy to solve. If a, is replaced in @ then the particle's 
wavefunction is 

@ = @a + Q / d4x'S(x - x')(yao)@ 

+41m/d4x'S(x - x ' )  Sd4."G(x'-x")yp(@+y,@)@ (62) 

and one way to solve it is by iteration. However, there is a hidden danger in this procedure 
which we want to mention. The terms with (Y are interpreted as the radiative, corrections 
when the probability distribution is affected by its self-produced EM field. We will neglect 
this effect and hence all the terms with a. In this case the set of equations (60) has an 
exact solution and it is given by (9) and (1 1). On the other hand, the integral equation (62) 
can be iterated to produce the solution, which is a series in powers of Q, and in principle 
should be equal to the exact solution. By comparing the two solutions we might find the 
answer to the source of the infinities which are found in the series. 

The expansion of (13) in powers of Q is relatively straightforward, but one encounters 
a serious problem. The terms of the form 
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appear in (13) and although Q might be small the expansion of this function might not have 
meaning if U is large. The contribution of these terms in the expansion of @ start with Q2, 
and the leading coefficient which is not small in the limit Iu) >> 1 is 

(64) 

However, it  should be recalled that in order to find the scattering amplitudes for 
.various processes one takes the Fourier transform of the coefficients in the expansion, 
e.g. [12, equation IS.l3]. The second-order scattering amplitude in this case is 

*(Z) A ue-i(px), 

d4x'S(x - x')(yaO) d4x"S(x' - x")(yao)$o 

which gives the contribution from p' - p = k2q and p' = p .  The last contribution is 
infinite and its source is easily explained from (64). the Fourier transform of which is 

which is indeed infinite for p = p' (one should recall that without U in (66) this would be 
the definition of the Dirac function, which is not considered infinite). Therefore, the source 
of the infinity in the expansion of the scattering amplitude is basically the wrong way one 
solves the set of equations (60). It is assumed that one can start from the unperturbed 
waves *O and build up the solution by iteration, however, this is not true because even 
for a very small Q the exponent in (63) can be large because U is large (in the Fourier 
transform -cu < U < CO ). The source of infinities in the power series in a is of the same 
nature. This is because the kernel S(x - x') carries the information about the expansion of 
the exact solution in the powers of Q, which in fact is not possible in the infinite interval 
of U. There are two ways one can get around these difficulties. One way is to use the 
exact solution (1  3) for @O in the set of equations (61). The kernel S(x - x ' )  becomes more 
complicated, but it can be found since the exact solutions @O an: known. The other way is 
to note that all the infinite terms contribute to the expansion of the function (63). and since 
this function contributes only the phase to the wavefunction, the transition probabilities are 
independent of it. Therefow by simply neglecting the infinite contributions in the expansion 
(62) one does not affect the cross sections. However, one may make it more formal by 
adding and subtracting terms in the Dirac equation: one going into the mass term, called the 
experimental mass, - and the other into the four-potential. The four-potential is modified in 
such a way so that (aa) = 0, in which case the infinite terms disappear. Such a modification 
of the four-potential is possible because of the gauge invariance of the potential. 

Nearly perfect agreement between the classical and quantum results could be the result 
of the ID assumption made in section 3. However, this assumption is only superficially 
1D since we still solve the 3D equations, however, by assuming that the initial probability 
distribution is delocalized in the x and y directions and localized in the z direction. In 
this respect the problem which is being solved is more general than most of the problems 
in the QED, since there the initial state of electron is entirely delocalized. However, it 
would indeed be of interest to see what the comparison is like when the initial probability 
is localized in all directions. The analysis of the spin [7]. where the localization of the 
probability distribution is in m, supports the view that similar agreement may be found in 
this more general case. 
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